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Almtraet--A general and systematic procedure is developed for calculating the hydrodynamic force 
and torque experienced by an arbitrarily-sized, -shaped and -oriented panicle undergoing an 
arbitrarily-directed translational and rotational motion inside one of two semi-infinite immiscible 
fluids separated by a planar interface. The procedure is developed for the case where the ratio, K, 
of particle characteristic size, a, to the particle's characteristic distance, d, from the interface is much 
smaller than unity (i.e. K<<I). Situations in which the far fields in each of the two fluids are 
arbitrary Stokes flow fields are also included in our analysis. Expressions derived for force and 
torque are in the form of a power series in the ratio K. It is demonstrated that the general results 
presented here can be easily used to derive explicit expressions for force and torque on any given 
particle in terms of the fluid and flow properties, as well as certain geometrical properties of the 
particle, provided the solution to a particle-dependent Fredholm-type surface integral equation is 
known or obtainable. 

The utility of the general results in calculating the hydrodynamic resistance of panicles is 
illustrated by the example of an arbitrarily-oriented ellipsoid translating and rotating in a quiescent 
two-phase fluid. Applications to bodies, such as slender bodies, for which only an approximate 
solution to the integral equation is available, are also briefly discussed. 

1. I N T R O D U C T I O N  

A particle moving in the vicinity of  an interface between two immiscible fluids experiences 
a force and torque which, depending on the ratio of  viscosities o f  the two fluids, the 
interface shape, particle geometry and direction of  particle motion, may be higher or lower 
than those experienced by the same particle in an unbounded flow. Apar t  f rom depending 
on the aforementioned factors, the magnitude of  the "ext ra"  force and torque also depends 
on a characteristic particle size, a, and orientation, as well as on the ratio (K = ) a/d  where 
d is a characteristic distance of the particle from the interface. Calculation of  this type of 
boundary  effect is essential to the understanding of  many  phenomena of  physical and 
engineering interest. Included among these phenomena are sedimentation, mot ion of  
micro-organisms, viscometry (Brenner 1964a), Brownian motion in colloids, lateral 
migration and drop or bubble flotation, to name a few. 

In the recent and not-so-recent past, many  research activities have been directed at 
calculating the hydrodynamic resistances of  spherical and other geometrically related 
particles translating or rotating parallel or normal  to a planar fluid-fluid or fluid-solid 
interface. Exact solutions for this class of  problems have been obtained (cf. Brenner 1961; 
Dean & O'Neill  1963; Kunesh 1971; Schneider et al. 1973; O'Neill  & Ranger 1979; Lee 
& Leal 1980) using the eigenfunction method originated by Jeffery (1912, 1915). Other 
exact solutions obtained by methods other than Jeffery's eigenfunction method include 
those for a circular disc straddling an interface (Ranger 1978) and an elliptic disc straddling 
an interface (Falade 1982). 

For  K << 1, approximate  expressions in the form of  a power series in K for the force and 
torque on a particle moving near a plane interface may be obtained by employing a regular 
perturbation technique. In this connection, Brenner (1964a) used the flow field of  a rotlet 
singularity oriented normal  to a free surface to calculate, to order K s, the torque on an 
axisymmetric body rotating near a free surface. Later, Lee et al. (1979) extended Lorentz 's  
0896)  theorem for fluid mot ion in the presence of  a plane wall to the general case of  a 
fluid-fluid interface (see also Aderogba & Blake 1978) and used the results to obtain 

807 



808 A. FALADE 

asymptotic expressions for the resistance of a sphere translating and rotating near a fluid 
interface. Lee & Leal (1980) made comparisons between the asymptotic and "exact" values 
of force and torque on a sphere. Their general finding was that agreement between the two 
sets of results is good for K-  ~/> 1.4 except in the special cases where the interface is a solid. 
surface and the particle velocity vector has a non-zero component normal to the surface. 
In the latter cases differences between the exact and asymptotic values of force and torque 
become significant for K-  1 >i 2.0. The extended method of Lorentz has also been employed 
to calculate the force and torque on a slender cylinder translating near a planar interface 
(Fulford & Blake 1983; Yang & Leal 1983, 1984). 

In this paper, a procedure is given for calculating the force and torque on an 
arbitrarily-sized, -shaped and -oriented particle translating and rotating near a planar 
interface between two immiscible fluids. For our analysis to be valid, however, the size and 
location of the particle relative to the interface must be such that K<< 1. Our analysis also 
allows for the case where, in the absence of the particle, the two fluids are themselves 
undergoing arbitrary Stokes motion. It is assumed that, in addition to satisfying Stokes 
equations, both the undisturbed and disturbance fields satisfy the condition of continuity 
of velocity and tangential stresses across the interface as well as the condition of zero 
normal velocity at the interface. It is further assumed that the discontinuity in normal 
stress across the interface does not cause any significant deformation of the planar 
interface. As shown by Lee et al. (1979), the latter assumption is reasonable if either surface 
tension or gravity forces are much greater than viscous forces (i.e. Ulzl/tr<<l or 
ga2Ap/l~U>>l, where tr =interfacial tension, /~=viscosity of fluid I (see figure 1) 
g = acceleration due to gravity, Ap = density difference between the two fluids and U is 
a characteristic flow velocity) or alternatively, if K << 1. The latter condition has already 
been assumed in our analysis. 

The method used in the development of our general results is the same as the singular 
perturbation method used by Cox & Brenner (1967) to derive general expressions for the 
effect of a solid wall of finite extent on the Stokes resistance of an arbitrary particle. In 
the problem under consideration here, however, the boundary is an interface of a known 
shape, and therefore, our results are of a less general nature than theirs. Use is also made 
of the two-phase Stokeslet solution given by Aderogba & Blake (1978) and Lee et al. 
(1979). 

The equations governing the problem of an arbitrary particle moving slowly in the 
vicinity of a planar interface are given in section 2. In section 3, the singular perturbation 
procedure for calculating the force and torque to any desired order in K is described. Some 
special cases which afford a reduction in the complexity of the general results of section 
3 are discussed in section 4. The general results of section 3 can be used to derive explicit 
expressions for the force and torque on a given particle if the solution of a particle- 
dependent Fredholm-type surface integral equation is known or obtainable. To illustrate 
the steps involved in the passage from general results to particular results, we give in 
section 5 the solution for an arbitrarily-oriented triaxial ellipsoid translating or rotating 
near the planar interface between two quiescent fluids. The results in section 3 can also 
be applied to bodies for which only an approximate solution to the integral equation is 
available. This fact is demonstrated in section 6 by the example of an arbitrarily-oriented 
slender circular cylinder translating normal to an interface. 

2. GOVERNING EQUATIONS 

Consider an arbitrary particle B of characteristic linear dimension, a, translating and 
rotating with linear and angular velocities V~ and f~;, respectively, inside one of two 
semi-infinite immiscible fluids (fluid I and fluid II). As in figure 1, let the interface between 
the two fluids be the plane x~ = 0 relative to a cartesian coordinate system (x~, x~, x~) with 
origin Q lying inside the plane of the interface. Without loss of generality let B be located 
in fluid I such that a point O affixed to B has the coordinates (0, 0, d) (d > 0) in the 
(x~, x~, x~) system. It is presumed that, in the absence of B, there would be Stokes flow 
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Figure l. A schematic sketch of  the positions o f  point O, affixed to particle B and the interface 
in the cartesian coordinate system (x~, x~, x~). 
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1 , , ~ l l [ u ,  • fields P~(xl, x2, x;)  and - i  ~-~l, x2, x;)  in the regions x;  < 0 and x3 > 0, respectively. (Note 
that in this paper superscripts I and II are used, wherever necessary, to distinguish between 
quantities in fluids I and II, respectively.) Denote by v~ and p' ,  respectively, the resultant 
velocity and pressure fields in the fluids. In terms of  characteristic fluid speed U, fluid 
viscosity/z ], and a, the dimensionless quantities Vi, i?t, fl~, v~, p and x~ may be defined thus: 

V' f l 'a  v' p ' a .  and xi x: ~=~i .  V ,=U;  fl, " V z = u ;  P , ' V '  a u '  - - - u - '  --  = -  

I f  the fluids are incompressible, and Reynolds numbers based on U and a in both fluids 
are small enough to justify a neglect of  inertial terms in the Navier-Stoke's equations, the 
equations satisfied by v~ and p in both fluids are 

[ | l~ll J n l i  vi, jj -p ,~  = 0, -i.jj - -,-.i = 0, [la, b] 

and 

vj, j = 0, [21 

where 2 = / . L l l / ~  1. 

In [la, b] and [2] and throughout this paper, unless the contrary is explicitly stated, 
Einstein's summation convention is implied when subscripts are repeated. Also, prede- 
cession of  a subscript by a comma denotes differentiation with respect to the independent 
variable corresponding to the subscript, i.e. 

t~u 
;Jd ~ ~X i" 

In addition to [la, b] and [2], v~ and p are required to satisfy the following boundary 
conditions: 

and 

M.F 12/5--"(3 

v](xl,x2,0+)=vll(xi,x2,0-), i = 1,2,3; 

v[ (x~ , x~, 0 +) = v~ (x~ , x2, 0 - )  = 0 ;  

tr~:(x,, x2, 0 +) = 2o~(xl, x2, 0-) ,  j = 1, 2; 

vi= vi + ~i~ [ljx~ on the surface of  B; 

v , ~  I~ i a s  Irl-" oo.  

[3a] 

[3b] 

[3c] 

HI 

[5] 
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In [3c], tro is the dimensionless stress tensor which is related to vi and p by 

tro = - p 6 ~ j  + v~.j + vj. ~. 

In [4], ~0k is the alternating unit tensor while, in [5], 

I r l = [ x ~ + x g + ( x 3 - - K - l ) 2 ]  '/2 and K =  a 
d" 

Let u~ be a disturbance velocity field defined by 

u l = v l - P ~  and u l ' = v l  ~-I7~', [6] 

and q be the Stokes pressure field associated with u~. Since P~ satisfies [la, b], [2], [3a--c] 
and [5], the equations satisfied by the field (ui, q) must be: 

and 

In [8c], 

u [ ~ -  i 0 " 2-" q.i = , u i j j -  q.i = O; [7a, b] 

u/j = O; [7c] 

u l ( x l ,  x2,  0 +) = Ull(Xl,  X2, 0-) ,  i = 1, 2, 3; [8a] 

u~ (x~, x2, 0 +) = u~(x,, x2, 0 - )  = O; [8b] 

ff~/(xl, x2, 0 +) = 26~(xl, x2, 0-) ,  j = I, 2; [8c] 

u i ~ O  as I r i s h ;  [9] 

ui = v~ + E0kf~jX~ -- 17~ on the surface of  B. [1o] 

0 U = - q 6 i j +  u i . j+  u/.i. 

If the undisturbed velocity field l?~(x~, x~, x3) has no singularities in the neighbourhood of  
B, then it admits of  a Taylor-like power series expansion in this neighbourhood. Thus, 
without loss of  generality, [10] may be replaced by the condition 

u~ = ~t i + ~t~/xj + ¢ti/kXkX j + • •., on B, [11] 

where ~, ~t o and Ct/k~ etc. are a constant vector, matrix and tensor, respectively. It is also 
to be noted that if the field I?~ has no singularity in the region occupied by B, the particle 
experiences the same resistance in the field (u~, q) as it does in the field (v~,p) .  

In the next section, asymptotic solutions to [7a-c]-[9] and [11] are developed using a 
singular perturbation technique similar to that used by Cox & Brenner (1967). 

3.  D E R I V A T I O N  O F  G E N E R A L  E X P R E S S I O N S  F O R  F O R C E  
AND T O R Q U E  

To solve [7a-el-[9] asymptotically, we define inner and outer fields. We postulate that 
the inner field has the asymptotic expansion 

ul  = oUl + lul  + 2u~ + " "  [ l E a ]  

and 

ql = oql+ jql+2ql  + . . .  [12hi 

Each pair of  (.ul,.qJ) in [12a, b] satisfies [7a-c] and [11] but not [8a-c] and [9]. 
The outer field, on the other hand, has the asymptotic representation 

u~ = lfi, + 2t/~ + ' ' • 

and 

[13a] 

q = ~ q + E q + " "  [13b] 
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for both fluids I and II. Next we define an outer independent variable ~ by the relation, 

~ = K x  i. 

In the coordinate system define by ~ ,  each pair of  terms (.a~, ~ )  in the outer field is 
made to satisfy 

and 

~1 r1--1 ~I 0 ~11 '11~--1 gl l  = 0 ,  
n u  i,.ff - -  .IX. n¢l  ,i  ~ ~ ,  n U  i, jd - -  A . ~ .  n61 . i  

~aj, j = O, 

d21(~l, x2, 0+) = ~fi~i(.~, x2, 0-) ,  i = 1, 2, 3, 

na~(-~, ,  .~2, 0 + )  ~--- na~l(-~l,  -~2, 0 - )  = O, 

,(~)(.~l, .~, 0 + )  = ;t - l l  - .a~j(x~, ~ ,  0 - ) ,  j = 1, 2 

[14a, b] 

[1~] 

[15a] 

[15b] 

[l 5c] 

~ f f ~ 0  as I~1---,~, F = g r .  [16] 

The outer interface condition satisfied by the inner field and the inner boundary 
condition satisfied by the outer field are to be obtained by making both fields satisfy the 
asymptotic matching conditions. 

3.1. Zero-order inner f ield 

The zero-order inner field in fluid I is determined uniquely by making it satisfy the 
unbounded flow outer condition, 

0 u l ~ 0  as I r l - - ' ~ ,  [17] 

in addition to satisfying [7a-c] and [11]. It can be shown (Bilby et al. 1975) that 

l=lfs oUi ~ f j (~ , ,~2 ,~3) (2R- '6o . -Ro . )do"  [18] 

and 

1 f ,  

J sfj(~l, ~2, ~3)Rjdo.. [19] °ql = - 4---~ 

In [18] and [19] c5~ is the Kronecker delta and R is the distance from the point (~ ,  ~2, ~3) 
on the surface S of the panicle to a general point (xl, x2, x3) in space, i.e. 

R '  = [(x,  - ~1)2 + (x2 - ~ ) ~  + (x3 - ~3)~1. 

The integral in [18] and [19] is over the surface S of B. The appropriate distribution of 
forces (Stokeslets) fj(~,, ~2, ~3) over S is obtained by solving the Fredholm-type surface 
integral equation, 

'fs oti+ auxj + ~ukXkXj + ' ' "  = 8--'~ fj(~l,  ~2, ~3)(260R -I _ R.U)do', [20] 

for points (x~, x2, x3) on S. It can be shown that fj is related to the stress distribution Ojk 
on S due to the zero-order inner field by (Eshelby 1959) 

fj---~ ¢Sjk nt o 

where n~ is the unit outward normal to S. Also, 

1 
U,i{x , , x:, x3; ~,, ¢2, ¢3} = ~ (2R- '  6q - R.,j) 

is the fundamental Stokeslet solution. 
For large I r l, Uo and R j ~ have the following Taylor series expansions: 

1 Uq = sa - ~ksu. k + i~t ~kSu.kt + ' ' "  [21] 
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and 

where 

and 

A. F A L A D E  

1 R.-y' = t j - ~ , t 1 ,  + i~t~ , t .y , t  + "  ", 

t - '  = Irl = [x, ~ + x~ + (xs - K - l ) 2 ]  1/2, 

sq = 2t6/~ -- ( t -  t).,~ 

[22] 

[23a] 

[23b] 

(k = ~k -- 6ksK-' .  [23C] 

In [21] and [22], we have made use of  the fact that at I r 'l  = 0, 

d~,a~t.. "d~e {UU; t'J}"=° = ( -  1)"(s,j.,t...p; t ji,...r). [24] 

In [24], Ir'l is distance from 0 to a point (~',, (2, ~'3), i.e. Ir't 2 = ~ .  Substituting [21] and 
[22] into [18] and [19], we have, 

and 

where 

and 

oU~ = A j s  U + Ajkso, k + Ajk~Su.kt + • • • [251 

oq~ = 2 ( A j t j  + Ajkt . jk  + Ajk, t.ikz + "  • "), [26] 

' 8n 8n fj~', da 

lfs Ajk, = ~ fj~*k~*tdcr. [27] 

Note that A j, A~,, Aj,~ etc. depend upon the shape, size and orientation of  B. They also 
depend linearly on the velocity vector on B through [20]. In view of this it is possible to 
write Ay, A~, Ajkj etc. in the form 

A j  = ~,C,j + ~ C,u + ~ ,C~o  + . ' . ,  [28a] 

Aj ,  = ~ i D ~  + O~ilDlijk "Jr" OlilraDmtijk "P " • ", [28b] 

A j k  I = o~iGijkl -+- ¢X~ Gmijk I + o~a n Gnmok I + ' "  • etc. [28c] 

When expressed in the outer variables [25] and [26] now become 

o u, = K A j g  U + K : A j j o . ,  + K3Aj,,go.k, + " "  [29a1 

and 

0q = 2(Afirj + KAjkT jk + K2AjkiT )kt + • • • ), [29b] 
K 2 , , 

where 50 and ~j are defined by [23a-c] with ~ and K replaced r and 1, respectively; 
respectively, while all the differential operations indicated in [29a, b] are to be done with 
respect to the outer independent variables. 

3.2.  T h e  f i r s t - o r d e r  o u t e r  f i e l d  

The first-order outer field (0ui, 0q) satisfies [14a-c]-[16]. In addition, it is constrained to 
have the same form as [29a, b] in its inner region (r ~ 0) in order that the asymptotic 
matching conditions have a chance of  being satisfied. 
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To construct this outer field, define the auxiliary field (~a~', :~*) by 

-1 -i and *q ~q* d~ 
~ui = ~a* + oU~ K =  K + K"  

The general two-phase Stokeslet solutions due to Aderogba & Blake (1978) and Lee et al. 
(1979) are then used to determine the functional form of ~a*, ~7", ~ t~l and ~#". Hence we 
have, 

,a* = oa~J,j + ½(1 - r )(2~oa~, ,  + ~ ~ 0aj,~) [30] 
and 

In [30] and [31], 

~ ~ I 2 ~ ~tYl ~ (F + l)(B~joUj + x30u3, t -  ~X3oUi, kk ). [311 

r = (1 - ~)(1 + ~ ) - ' ,  J~ = r ~ , j -  ( r  + 1)~,3~j3, 

B/ j  = ¢$,j - -  2¢$i3~j3 a n d  o~i(x~, x2, - x 3 ) .  

Preparatory to obtaining the solutions to the equations of  the first-order inner fields, 
we expand ~t~* in a Taylor series expansion about  O for small values of  r. The resulting 
expansion is 

,a* = K {~E, + ,E~,.~m + ,E~Yc.~,.  + . . .  }, [32] 

where 

and 

iEi = AjPji + KAjkPiqi "4- K 2 Aj~.P,~j, +" "', 

~E~ = Aj~j, .  + KAjkPkj,. + ' "  ", 

~E~ = A j ~ n  + K A ~ P ~ , .  + " "  etc. 

xm = :r,. -- t~m3. 

The coefficients of  A j, Ajk etc. in [33a-c] are given by 

ej, = ~j~J~, + ' ( l  - r)(e#j3, + ~j,,,B~,), 

ekj, = [fljp,,Jp, + ~(1 -- r)(2#j3.  + #jpth, B,,,)]B.~, 

Pj,~ = #jmJ~, + ½(1 - r)[2Laj3.. + (~.3#:,) + (# j ,~  + 26m3[Jjp.) Bp,]. 

15kj~ = {fl)p,,~J., + ~(1 -- r)[2(#:.~ + ~ .3#: . )  + (#j~,.. + 26.,3[Jj~b,)Bp,]} B~k etc. 

In [34a-d], 

flip = ~p(0, 0, - 1) and flj~b~ .... =sjp, ktm...AO, O, -- 1). 

Explicit expressions for some of the fls are 

~j~ + ~j3~,3 
#J~= 2 ' 

[3j~ = 6~36jp + B.j6.~ + B~.6j3 + 36j36p36~3 
4 

and 
--6k,(fjp + Bj, B,~ + Bp.B/ + 3 (6k36,36~p + 6,36.3Bjk 

8 

In terms of the inner variables [32] takes the form 

lu~ = KtE~ + K 2 IE~.~,~ + K 3 I E i m n X n . X m  "4- " " ", 

where xi = x i -  ~i3. 

[33a] 

[33b] 

[33c] 

[34a] 

[34b] 

[34c] 

[34<t] 

[35a1 

[afb] 

[35c] 

[36] 
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3.3. First-order inner f ield 

Apart from satisfying Stokes equations [7a-c], the first order inner field (tui. tq) should 
also satisfy the boundary conditions 

)u i=0  on B [37a] 
and 

tui"* l U i = K t E i + K 2 1 E ~ x m + K 3 t E t m ,  Y , Y ~ + . "  as Jr I ~ ~ .  [37b] 

The last condition [37b] ensures that the inner and outer first-order fields are properly 
matched to the first order in K. 

Writing 

tui = tu* + K (tEi + K tE~,Yc= + K 2 t E ~ , ~ , ~ ,  + • " • ), 

it is easy to see that ~u* satisfies the boundary conditions 

t u * =  - K ( j E ~ +  KtE~.~,,,+ K2tE~,,.f,,.~,,+ . . . )  on B 

and 

t u * = 0  as )rl--* ~ .  

Following the procedure used in subsection 3.1 for constructing the zero-order inner field 
(0u~,0q), it is straightforward to show that ~u* has the outer expansion (in the inner 
variables) 

tu* = K(taisli  + ,alksik,k + 1Amsq, kt + ' "  "), [38] 

as I r l ~  ~ .  
Here, 

,A i = (tE~C~ + KtE~, C,~o + K 2 rE,,,, C,,,~ + " "  ), 

talk = (tE~Diik + KtE~Dmiik + K 2 1 E ~  D~e  k + • .) etc. 

Expressed in the inner variables, [38] has the form 

tu* = K 2 (tA:~v + K,Aik~O. k + K 2 ,Aik,~ i, kt + ' ' "  )" 

[39a] 

[39b] 

3.4. Second-order outer f ie ld  

We seek, as the second-order outer field, the pair (2~i, 2q), which has the same behaviour 
as luj* as Ir] ~ 0 and which satisfies [14a-c]-[16]. Following the procedure of  subsection 
3.2, we define the auxiliary field, 2u,*, by 

A repetition of  the analyses given in subsection 3.2 immediately leads to 

• l~: ~,  B~ [40] 2a? = J,j ,a* + (1 - r ) ( ~ 3  ta~., + ~x3 tUj.kk , ,  

and 

- , t=2 u* ~ [41] 2ill t = (F + 1)(Bijtu* + x3tu3.i-i.~31 ,.,kp. 

In terms of  the inner variables, :u* has the Taylor series expansion 

2~* = K:(2Ei + KEE,m~Cm + K2:E~,,,Yc, Ycm +" " '), 

as I?1 --* oo. The expressions for 2E~, :E,,, 2E#,~ etc. are obtained by using [39a, b] with 
A:, Aik, Aikt etc. replaced by tA l, ,Aik, talk1 etc. 

3.5. Second-order inner f ield 

Repeating the analysis of  subsection 3.3 for this field, we obtain the following expansion 
for the second-order velocity :ui as I r ] ~  o~: 
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2Ui = K 2 (2E~ + K2E~.~,,, + K 2 2E~,,,~,,.~,. + " "  ) + K2 (:A/s o + 2A#Si/,k + 2AjklSi.hkt + " " "), 

where 2Aj = (2E~C,j + K2Ei~ C.ko + " " ") and 2Ajk = (2E~Dok + K2EuD~ok + ' "  "). 
The procedure described in subsections 3.1-3.5 may be repeated ad infinitum. 
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3.6. Force and torque on the particle 

The force and torque on the particle is obtained by applying the generalized Faxen's 
laws given by Brenner (1964b) to the inner fields. For the dimensionless force Fj and torque 
Tj (non-dimensionalized with respect to/~l Ua and/~l Ua 2, respectively), we have the series 
(ordered in K) 

and 

Fj = 8~ [ A / -  K A k P , i C  U + K2(AkPk, C~P,~C~j -- Ak~k~ Cmo -- A,~Pk.iCo) 

- K3(A~PkqCq, P~C,,,oP,,,,C./+ Ak~k~,~C,,,,,, + A,,kPi,,~C,,, o + A,,ktPtk.,C o 

- A k P , . D . . , P t . , C  o - AtPk.C.oPou.C.,  o 

-- AkPk.,.C.mqPq, CoA,,kPk,,,,,C.,qPq,,Coj) + O(K')]  [42] 

Tj = 8rtGk[Aik -- KAqPqjDtu, + K2(AqPq,,C,,,,,P,,,tDtu, - Aq.~,Dt,,,~k - Aq.P.qtDtik) 

- -  K 3 ( A q  Pqr C,o Pot Ct. P,~ D=i + A q. ~ , ~  D~.,i + a q f f  q, nln D.n.u, + A nmlP~.,~ Dqik 

- - a q e q m  C . o P o j t O o i k  - -  A q P q m D . o P o n j D j o c  - -  a q P q o t C l o n e n m D m i  k 

-- aq, P,qtC,oPomD=,k) + O(K4)]. [431 

Note that A j, A/k, Ajk~ . . . . .  C o, C ~ , . . .  are all vectors and tensors which are determinable 
from the solution of the unbounded flow integral equation [20] and [27] and [28a--c]. On 
the other hand, P0, P~ . . . . .  /50k .. . .  and ~ , . . .  depend on the ratio of  viscosities for the 
planar interface problems under consideration here. From the structure of  [42] and [43], 
it is obvious that, to calculate the force and torque on the particle to order K"(n > 2), it 
is in general necessary to obtain a solution to [20] for the particle when it is immersed in 
an unbounded flow field whose velocity distribution is a polynomial of  degree n - 1. 

4. SOME SPECIAL CASES 

In this section, we consider some interesting cases for which [42] and [43] reduce to more 
degenerate forms. 

4.1. Pure translation in a quiescent f luid 

If fluids I and II are at rest at infinity and if the particle translates without rotating in 
fluid I with velocity U,, then in [l l] 

Gti = Ui ,  Qtij = Oti~ ~ " " " = % k  . . . r -~ O. 

Under these circumstances, 

Aj=U, Co 

where, as shown by Brenner (1962), C U is a symmetric tensor. Also, 

Ajk = UiD~,, Ajkt = U,D~, etc. 

If  the particle under consideration is orthotropic (e.g. an ellipsoid, a rectangular 
paraUelepiped or any polyhedron), or if it possesses any form of axial symmetry, it may 
be deduced (Brenner 1964c) that provided O coincides with the centre of reaction of  the 
particle 

A/k = 0 [44a1 
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Also, 

c,j  = 0 = [ 4 4 b ]  

since the particle would experience neither a torque when translating in an infinite fluid 
nor a force when rotating in same. For orthotropic bodies, O then is the point of 
intersection of the three mutually perpendicular planes of symmetry while for non- 
orthotropic bodies of revolution O lies somewhere on the axis of symmetry. 

It is obvious from [34a] and [35a--c] that P//is a diagonal matrix, i.e. 

Pj, = 6ijQ, (no sum). [45] 

For the class of bodies under discussion here, C# is also a diagonal matrix provided the 
body is oriented such that its planes or axes of symmetry coincide with coordinate planes 
or axes, respectively, i.e. 

C o. = cS~Zj (no sum on j) .  [46] 

The consequence of [44a, b]-[46] is that for these special orientations, [42] and [43] reduce, 
respectively, to 

8• Aj [47a] 
Fj = (1 + gjK + djK 3) + O(K') 

and 

where 

and 

and 

8r~K:bj (no sum on j) ,  [47b] 
T/= (1 + ejK) + O(K')  

gj=QjZj 

d~ = (A,  P k ~  C ~  + A,~lPu, n~ Co') [48a] 
Ay, 

bj = --Ej~k A,,P,,,,,tDtm~ [48b] 

AqPqmfmJ (no sum on j).  [48c] ej= Aj 

The result in [47a, b] and [48a-c] may be shown to hold true for any interface shape 
which is symmetrical about an axis through O provided the orthotropic or axisymmetric 
body possesses fore- and aft-symmetry about this axis. However, for non-planar interfaces 
which satisfy this symmetry condition, expressions for Pij, P~ etc. would be different from 
those given in [34a-d]. 

For a sphere, simple calculations show that 

and 

Zj=3 and Aj=3Uj [49a] 
4 '  

~. 2 - 3 2  for j ~ 3 [49b] 

~ 4(1 -k 2) 

eJ-- 32) 
[ .  2(1 + 2 )  for j = 3 [49c] 

I 

The only non-zero elements of the tensor P~,,t are (from [34c] and [35a--c]) 

2 +  32 
jl5232 /5131 ~P333 = --/~322 = --/15311 8(1 + 2) 

[49d] 
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and 

32 - 2 
J5223 = J~,I3 = 8(1 + 2-"""----)" 

It follows immediately from [48a-c] and [49a-d] that 

3 2 - 3 2  for j # 3  
16 1 + 2  

gj= 

- 3  2 + 3 2  for j = 3  
8 1 + 2  

and 

[5o] 

b/= - 4 ~ . t A . i ~ . , . ,  = In (1 + 2)-I(U, 6j, - U26j~). [511 

Equations [50] and [51] are in complete agreement with the corresponding results of Lee 
et al. (1979). Calculation of dj requires the determination of C~,u which in turn requires 
that [20] be solved for the case where the disturbance velocity has the distribution 

u~ = o ~ x ,  xj .  

For a sphere, it can be shown that (Brenner 1966) 

C ~  = ¼~6.,.. 

For sphere motion parallel to the interface along the x~-axis, say, 

dj ~- (][~i133 C3311 + ~I122C2211 + ][~iiii CIIII + A, I I IP ,  Itl + A122P221| + AI33P3311)6jI, 

PI,I, = 2~,,,, = 

P2211 = 2P1122 ---- 

2 + 7 2  

16(1 + it)' 

5). - 2 

16(1+2)' 

where 

and 

P33,1 = 2PI,33 = 1 - it 
4 0 + 2 )  

P . .  = 2/53333 = -½, 
and A ~  has the same numerical value as ~6.,.. It therefore follows that 

dj = (22 + 1)(6jl + 6j2) 3(2 - 3it)(6jl + 6j~) [52a, b] 
16(1 + it) and ej = 16(1 + it) 

For motion normal to the interface, 

= ( i ~ . .  c . .  + i~3~ c ~ 3  + IB.,, c i i .  + a . ~ P . .  + a3~2P~,3~ + a~,, P,,33)~. 

- 3  
- [8(1 + 2)16j3" [52c] 

It is not necessary to calculate ej for this case because the numerator of Tj in [47b] is zero. 
The results in [52a-c] represent an extension, to third order in K, of the corresponding 
results given in Lee et ai. (1979). 

4.2. Pure  rotat ion in a quiescent f l u id  

If  the particle is rotating with angular velocity wk in a two-phase fluid which is at rest 
at infinity, then 

~ -~ Eu,:Wk, ~'~ . . . . .  ~ ... .  = O. [53] 



818 A. FALADE 

Also, 

Aj=£~nwmCnq,  Ajk=E~nnWmOnq k etc. 

For an orthotropic or axially symmetric body oriented such that its planes or axes o f  
symmetry are parallel to coordinate planes or axes, respectively, we have in addition to 
[44b], [45] and [46], that if O and the centre of  reaction coincide, 

A~ = 0 = Ajkt. [54] 

As a consequence of  these symmetry properties, [42] and [43] reduce to 

Fj = -8rgK2(A.qPq.iCij + KA.qPq.rnCrnkPkoCo)) + O(K' )  [551 

and 

Tj = 8nEja(aa - g 3  AnqPqnmlDmok) + O ( K 4 ) .  [56] 

I wla has been selected as the characteristic speed, where I wl is understood to mean the 
magnitude of  the angular velocity [i.e. I w I = (w~w3 ~/2] and a is the sphere radius. To prevent 
the body from translating, a force Fj must be exerted on it. 

For a spherical particle it can be shown that 
3 

__ 8X A.qpq,,iCq = ~rc£~3 W,, [57a] 
1 + 2  

and 

In [57a, b], 

8n%(A~_K3A~p,..,D.,~)=8n[~_I+F~ ( r  - 2) Y.j] [57b] 

W n 

Y , = 6 , j - 6 , 3 6 j ,  and ff"=iW[" 

These results are in accord with the corresponding ones given by Lee et al. (1979). 

5. M O T I O N  OF AN A R B I T R A R I L Y - O R I E N T E D  E L L I P S O I D  

In this section, the utility of  the general expressions ([42] and [43]) given in section 3 
is demonstrated by calculating the force and torque on an arbitrarily-oriented ellipsoid 
translating and rotating in a two-phase fluid. 

Consider an ellipsoidal particle with semi-axes of  lengths ~ ,  ti2 and ~3. Let the particle 
be momentarily positioned in fluid I such that its centre, O, is at (0, 0, d)(d > 0) relative 
to a cartesian coordinate system (x~, x2, x3) whose origin, Q, is on the planar interface (see 
Figure 2). The interface is the plane x 3 = 0 in this coordinate system. The orientations of  
the x~- and x2-axes are such that the x~-axis is parallel to the ti~-semi-axis of  the ellipsoid 
while the x2- and x3-axes make an arbitrary angle 0 with the ellipsoid's ti 2- and ti3-semi-axes , 
respectively, in the counter-clockwise direction. Thus, if (e~, e~, el) and (e~, e2, e3) are two 
right-handed triads of  orthonormal vectors lying, one along the principal axes of  the 
ellipsoid and the other along the (xl, x2, x3) coordinate axes, respectively, then the nine 
direction cosines are given by 

M/k--=ej'ek-- cosO --sinO . 

sin 0 cos 0 

Let us assume that the particle translates with an arbitrary velocity U~ and, at the same 
time, rotates about  an arbitrary axis through 0 with angular speed w~. By virtue of  the 
linearity of  the governing equations and boundary conditions, the resistance of  the particle 
while performing this general motion may be determined by appropriately superposing the 
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Fluid 1" 

Elli p$oid '~ 

\ 
\ 

J 

X5 

I 
Id 
I 

Fluid f f  

Figure 2. A schematic sketch of the positions of the arbitrarily-oriented ellipsoid and the interface 
in the cartesian coordinate systems (x,,x2, x3) and (x], x'2,x~). The two coordinate systems a r e  

related by xk = M#x~. 

resistance of  the particle for the six independent cases in each of  which either the particle's 
direction of  translational motion or its axis of  rotation is parallel to one of  the three 
coordinate axes. In the rest of  this section, we determine, to at least order K 3, the force 
and torque on the particle in each of  these six cases. Without loss of  generality, we select 
63 as the characteristic length of  the problem with respect to which all other lengths are 
non-dimensionalized. Also, K - ~3/d. 

5. I. Particle motion parallel to the interface along the xl-axis  

If the particle is moved parallel to the xl-axis with dimensional speed UI, then 

where we have non-dimensionalized velocities with respect to UI as the characteristic speed. 
From [42], it is evident that the calculation, to order K 3, of  the particle drag requires 

the determination of  only AI, Cll and Pll since, by virtue of  the orthotropicity of  the 
particle, [44a, b] apply. The Stokeslet distribution fi that satisfies [20] can be deduced from 
the results of  Dyson (1891) and Eshelby (1959) to be 

£ = EoSjn,~ ;6j,, [s81 

where 

and 

E0 = 4(al a2) -I, 

/0 = I v a(qj) dq,, 
I 

j 0  

j i =  (lo + 2 -I i), a~ 13 (no sum on 

I, = f :  (a,~ + qJ)-' A(q/) dq~ 

t~(~,) = [(a~ + ~,)(a~ + ~)(1 + ~)1-'/:. 
In [58], ni is the outward unit normal to the ellipsoidal surface and (~;, ~ ,  ~ )  are the 
coordinates of  a point on the particle surface in the system defined by the orthonormal 
triad (e;,e~,e~) lying along the principal axes of  the ellipsoid. Also, al =a~/d3 and 
a: = ~2/fi3. 

From [58], it follows that 

Aj = 2J, 6jr [59a] 
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and, therefore, 

C .  = 2Jl. [59b] 

From [34a] and [35a-c], P0 is determined to be the diagonal matrix given by 

P. = ~[(6 U -- 6,36is)(2 --_32) ± 26,36j3 (2 + 32)] [60] 
o I + 2  

Applying [42], [43] and [59a], we obtain the components of the force, Fj( j  = 1, 2, 3), and 
torque, T:, acting on the particle as 

F, = 8x#la3Ut(F,,o + K F  m + K2Ft,2) + O(K3), [61] 

F~=F3=0, 

T , = 0 ,  

T2 = - 8n# Ia~U~K 2 T~2 + 0 (K 3) [62a] 

and 

where 

and 

Here, 

and 

T 3 = 81t I . I I~]UIK2TI3  + O(K3), 

Fl lo=Ai ,  F . I  = - A I P ~ j C l l ,  Fn2= A I ( P N C . ) ,  

Z12 = AI PII3(D3131 - D3113 ) + A1:131 (D133t - D1313 ) 

Tt3 = Ai Pll3(D3m - D3121) + Al :Is1 (Dim - D3m). 

[62b] 

2 + 3 2  
:J31 = :~32 = 8(1 + 2--~' [64b] 

In [63a-h], b~, b2 . . . . .  bs are constants whose values depend on the ratio a~:a2: I. The 
computed values of  these constants for three different ratios al :as: 1, namely 0.5:0.4:1 
(case I), 0.5:0.6:1 (case II) and 0.5:0.8:1 (case III), are displayed in table 1. 

From [61], it is seen that, to order K 3, Ft is independent of  the orientation angle, 9. 
However, higher-order terms introduce 9-dependence into Fi. In figures 3a and 3b, are 
plotted the variation of Fj~ and Ft~2 with the viscosity ratio, 2. In figure 3a, it is seen that 
F~I~ is negative- or positive-valued according to whether 2 is less or greater than ~. As can 
be observed from figure 3b, F~2, like F~0, is positive-valued for all 2. A consequence of 
these observations is that, for 2 < ~, the force experienced by the particle in two-phase flow 

Dsl31 = -~at2(bt cos 2 9 + b2 sin 2 9), [63a] 

D3,t3 = -~(a~bs cos 2 9 + a~b, sin 2 9), [63b] 

Di331 = -~a2(bs cos 2 9 + b6 sin 2 9), [63c] 

Djsl3 = -2(aEb7 cos 2 9 + a~b8 sin 2 9), [63d] 

Dsl21 = -~a~(b2 - bl) sin 9 cos 9, [63e] 

D3112 ----- -3(aEb4 - a3~b3) sin 9 cos 9, [63f] 

Dml = -]a~(b6 - bs) sin 9 cos 9, [63g] 

Dr31: = -](a~bs - a~bT) sin 9 cos 9, [63h] 

32 - 2 
P, 13 = P223 = - -  [64a] 8(I +,~) 
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Table  1. Values  o f  the constants  bt ,b2 . . . . .  b8 for case I 
(al:a2:l=O.5:O.4:l),caseII (a~:a2:i  = 0 . 5 : 0 . 6 : 1 )  and case 

III (al:a2:l=0.5:0.8:l) 
Constants  for Case  Case  Case  
the el l ipsoids I II III 

b I 0.6735 0.8240 0.9139 
b 2 0 .6877 1.0370 1.0360 
b 3 0.06 i 6 0 .08 ! 9 0.0591 
b4 0.1457 0.2880 0.1517 
b s 0 .2462  0 .3210  0 .3265 
b 6 0.0931 0.4200 0.3886 
b 7 0.4795 0.5484 0.6468 
b s 0 .7402 0 .9100  0 .8003 

is lower than that experienced in unbounded flow. Also, both F.I and Fll2 increase in 
magnitude as the panicle size (volume) increases. 

The qualitative dependence of  T2 on 0 is shown in figure 4 for 3. = 0, 3. = 1 and 3. = oo. 
It is shown that T2 increases in magnitude as particle size increases for any given pair of  
0 and 3.. The rate of  change of/ '2 with respect to 0 is also observed to be greatest for the 
smallest panicle (case I) for a given value of  3.. It is to be noted that, for 3. = 0, T2 is positive 

0 6  

04 

Q2 

~IN 0.0 

-Q2 

-04  

(o) 

/ , i , i , 
t 2 4 6 8 10 

Viscosity r(:ltiO, X 

.x w ~ x  

I I I I I 
12 14 16 18 20 

Figure 3a. First-order c o m p o n e n t ,  Fro ,  o f  the d imens ionless  drag force as a function of  the viscosity 
ratio, 2, for an el l ipsoid translating parallel to the xrax i s :  - - - ,  case I (a, : a 2 : 1 = 0.5 : 0.4 : 1); 

, c a s e I I  (a I : a  2 : l = 0 . 5 : 0 . 6 : l ) ; - - x - - , c a s e l I 1  ( a , : a  2 : 1 = 0 . 5 : 0 . 8 : 1 ) .  

0.20 (b) 

0.16  

0.12 

X 

O.08 

........ X ~ I 1 f 

f 

/ / /  

/~  I I I i I 
2 4 6 8 10 

~ X p 

I I I I 
12 14 16 18 

ViScosity rotio~ X 

Figure 3b. Second-order  c o m p o n e n t ,  Fro ,  o f  the d imens ionless  drag force as a function o f  the 
viscosi ty  ratio, 2, for an el l ipsoid translating parallel to the x,-axis: - - - ,  case I; , case II; -- x --,  

case III.  
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X,O 

010 ~ x ~  

008 L -'~'x ~ .  ~'~"'x . ~ x ~  

004 .- ' J /  ~, / / - /  
\ \  /./" 

0.02 

- - - ~  ~ * * 9 0 *  1 2 0 '  ..150"-- . . . .  , 1 8 0 "  

-0.02 - -  ~ x  ~ ~  
i x 

x,1 Orientation angle, 8 

~ _o,O6x-__ _ - 
~1~ 

- 0 ~  

-010 
~x -"-"~ 

-012 L 
}, = (~:) 

Figure 4. Dimens ion le s s  torque,  ]Tt2 [or force 3Ft/(16n#lw~]K2)], as a function of  orientation 
angle,  0 for an el l ipsoid translating parallel to the xt-axis  (or rotating with angular  velocity w2e2): 

, case  I; - - ,  case II; -- x --, case III. 

while, for 2 = 1 and 2 = oo, the torque is negative. Figure 5 shows the variation of  torque, 
T~, with 0 for 2 = 0, 2 = 1 and 2 = oo for all three cases. The direction of  the torque for 
2 = 0 is again opposite to that for 2 = 1 and 2 = o0. It is also worth noting that the 
magnitude of  T3 is about one order of  magnitude less than that of  T2 for a given pair of 
2 and 0, and that T3 decreases as the particle size (volume) increases. 

5.2. Particle motion parallel to the interface along the x2-axis 

Next we calculate, to order K 3, the resistance of  the ellipsoidal particle when it is moved 
parallel to the x2-axis with dimensional speed U2. We select U2 as the characteristic speed 

003 

002 

ooi 

k~ -0 01 mle~ 

-002 I 
-0  03 

\\ 
x 

I I 
"-~-~'---x-- ~ - ~  ~ "  

X ×  / ' /  

, \.__×//Q~/ 

x / \ 
/ X;1 

x / ~ 

120 ° 150 ° 
Orientat ion angle, e 

X : O  
>,:00 

Figure 5. D imens ion le s s  torque,  ~T u [or force 3Fi/(16nl~lw3a~K2)], as a function of  orientation 
angle,  0 for an el l ipsoid translating parallel to the xm-axis (or rotating with angular  veloci ty  w3e3): 

- - - ,  case I; - - - ,  case II,  -- x --, case III.  
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of the flow field. We then have 

In this case, the Stokeslet distribution fj  is given by 

fj = E0 {[(J2 cos 2 O + J3 s in2 0)6j2 + (J2 - J3) sin O cos Oj3]} n~; .  

From [65], it follows that 

Aj = 2[(J2 cos 2 O + ,J3 sin2 0)6j2 + (3"2 - J3) sin O cos 06j3], 

(722 = 2 (']2 cOS2 8 "{- '/3 sin2 O) 

and 

[65] 

and 

and 

/'2 = T3 = 0. [66e1 

In [66a-e], 

F220 = A2, F22! = - (A2 P22 C22 + A3 P33 C32) [67a, b] 

F222 = A2 P22 ((?22/'22 C22 + (723 P33 C32) + A3 P33 (C32 P22 (722 + 6"33 P33 C32), [67c] 

F230 = A3, F231 = -(A2P22C23 + A3P33C33), [67d, e] 

F232 = A2 P22 (C22 P22 (?23 + C23 P33 C33) + A3 P33 (C32 P22 (723 + C33 P33 C33), [67t] 

P333 = - -  2P322 = - -  2P311 = -- (2 + 32) [68] 
4 ' 

D3223 - -  D3232 = 3~[a32(dl s in  2 O + d 2 c o s  2 O) + a22(d3 sin 2 O + d4 COS 2 O)], [69a] 

D2323 - -  D2332 --  --23[a](d I cos 2 O + d 2 sin 2 O) + a22(d3 cos 2 O + d4 sin 2 O)], [69b] 

- -  D3332) = g(a3d5 + a2d6) cos O sin O. [69c] (DI123 DI132 ) -t- (D2223 - D2232) - 2(D3323 - 2 2 2 

The constants d,, d2 . . . . .  d6 appearing in [69a-c] depend on the ratio a,:a2: 1. The computed 
values of  these constants for cases I, II and III are displayed in table 2. The grouping of  
terms on the l.h.s, of  [69a-c] is guided by the combinations in which these terms appear 
in [66d]. 

C23 = 2(,/2 - J3) cos 0 sin 8. 

Since, as previously pointed out, C o is symmetric, we have 

C23 = C32 and C21 ~ C12 -~- C31 ~ C13 ~ 0. 

It may also be deduced from the unbounded flow solution in the case when the particle 
translates parallel to the x3-axis that, 

C33 = 2(./3 cos 2 O + J2 sin2 O). 

From [42] and [43], we obtain the following expressions for the force, Fj, and the torque, 
Tj, acting on the particle: 

F, - 0, [66a] 

F2 = 8n~la3U2(F,,o + KF221 + K2F~2) + O(K3), [66b] 

V 3 ---- 8~uIa3U2(F230 -t- KF23~ + K 2 F 2 n )  + O ( K 3 ) ,  [66c] 

T 1 = - -  8 ~  I~2U2 {A 2 [J~232(D2323 1 D2332) + JB223 (D3223 _ D3232) ] 

+ A3 [JB311 (DII23 - DII32 ) -~- J5322(D2223 - D2232 ) 

-Jr- ]3333 (D3323 - D3332)] } K 2 -Jr- O ( K  3) [bed]  
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Table 2. Values o f  the constants d,,  d 2 . . . . .  d~ for cases I, II 
and III 

Constants for Case Case Case 
the ellipsoids I II III 

dj 0.0450 0.0720 0.1112 
d 2 - 0 . 4 8 3 2  - 0 . 5 4 0 4  -0 .6 0 8 8  
d 3 --0.7197 --0.6685 --0.6175 
d 4 0.2814 0.2044 0.1738 
d 5 - 1.5846 - 1.8372 - 2.160 
d 6 3.0033 2.6187 2.5359 

In figures 6a-6c are shown the qualitative variations with 0 of  F,,0, F22, and F,,2, 
respectively, for 2 = 0, 2 = 1 and 2 = oo. It is observed in figures 6a-6c that the zero-, first- 
and second-order components of  F: all increase in magnitude as particle size (volume) 
increases (with the exception of  F2n for case III, 2 = l) for a given pair of  0 and 2. The 
rate of  variation of  these ordered components with the orientation angle 0 is found to be 
greatest for the smallest particle. For 2 = 0, F~t is negative-valued for all orientations and 
all three particles. With the exception of  this latter case, all the other quantities plotted 
in figures 6a-6c are positive-valued. From this observation, it is concluded that, regardless 
of  particle size and orientation, the effect of  a free surface is to decrease the drag on a 
particle relative to the corresponding unbounded fluid drag when the direction of  particle 
motion is parallel to the interface. For 2 = l and 2 = oo, the drag is increased over its 
unbounded fluid value. It should also be noted that, with the exception of  F22~ for 2 = I, 
all the ordered components of F2 increase monotonically in value in the range 0 ° < O < 90 ° 
and decrease monotonically in the range 90 ° ~< 0 ~< 180 °. 

Figures 7a-7c show the variation of  F230, F23t and F2n with 0 for 2 = 0, 2 = l and 2 = oo. 
It is seen from these figures that in contrast to those of  F2, the ordered components of  
/'3 increase in magnitude as particle size decreases for any given pair o f  2 and 0, except 
at 0 = 0 °, 0 = 90 ° and 0 = 180 ° where all components are zero-valued. All components 
have same sign at any given value of  0 and have their largest magnitudes at a value of  
0 which is slightly less than 45 ° or slightly greater than 135 °. 

As can be seen in figure 8, where 3T~/16n/JU2~ is plotted against 0, 7", is negative-valued 
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-- × --, case III. 
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for all three el l ipsoids and all or ientat ions  when  ). = 0. Thus,  i f  the particle were 
unconstra ined,  it w o u l d  rotate in such a direction that the or ientat ion angle 0 is increased. 
It is also revealed in figure 8 that, for 2 = 0, the torque depends  weak ly  o n  0 over the range 
60 ° < 0 < 120 ° for an ell ipsoid. 

For  2 = oo, the torque,  T,, on  the three el l ipsoids acts in a direct ion oppos i te  to that 
for ;t = 0 w h e n  0 < 0, or 0 > 180 - 0,,  where  0~ depends  on  the ratio a, :a2: 1. For  the three 
el l ipsoids the largest posit ive torque occurs  for 0 = 0 °, whi le  the largest negative  torque 
occurs  for 0 = 90 °. Again ,  the rate o f  change  o f  7", with respect to 0 is greatest for the 
smallest  particle. Figure 8 also suggests  that for a sufficiently "slender" el l ipsoid 
(a3 > a2, a3 > a,)  a change  in the sign o f  the torque m a y  be obta ined as the or ientat ion  
angle 0 changes  f rom 0 ° to 90 ° (or from 90 ° to 180°), provided the order o f  magni tude  
o f  2 is /> 1. 

5.3. Motion normal to the interface 

In this case,  the ell ipsoid is presumed to be m o v i n g  perpendicular to the interface with 
the speed U3. C h o o s i n g  U3 as the characterist ic  speed,  we  have  

0~i = ~i3" 

For  this case,  we  also have  

fj = Eo[(J3 cos  2 0 + "/2 sin2 0)6i3 + (,/2 -- J3) sin 0 cos  0 5j2]ni~ [70] 
and 

Aj = 2[(J  2 - "/3) cos  0 sin 0 6j: + (,/3 cos  2 0 + -/2 sin 2 0)  6y3]. [71] 
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The force, Fj, and torque, T:, acting on the panicle may be expressed as 

FI = 0, F2 = 8~#la3U3(Fn0 + KFn~ + K2Fm) + O(K3)' [72a, b] 

F3 = 8~t~la3U3(F330 + KFn~ + K~ F~n) + O(K3) [72c] 

and 

T, = - 8 ~ , ' ~  U , { A ~ [ : ~ 3 ~ ( D ~ , ~ ,  - O~, ,~)  + : = , ( O = ,  - O,~,~)]  + a , [ : , , ,  (O , ,~ ,  - O , , ~ , )  

+ Pm(D22n - O~.n) + P3n(O3323 - D3n2)]} K2 + O(K3) • [72d] 

Expressions for Fn0, Fnl, Fro, F330, F331 and F3n are, respectively, given by the r.h.s, of  
[67a-f]. Note,  however, that the operative definitions of  A2 and .4 3 in this section are those 
given by [71]. The expressions for Fn0, F32, and F3~2 turn out to be identical to those for 
F230, F231 and F2n, respectively, to order K 3. The qualitative variations of  F330, F33t and F3n 
with 0 for the three ellipsoids and for 2 = 0, 2 = 1 and 2 = oo are plotted in figures 9a-9c. 
From these figures we deduce that the three ordered components of  F3 are all positive and 
they increase as particle size increases for any given pair of  2 and 0. For any given 2, the 
rate of  change of  each of  the three ordered components with 0 decreases with particle size. 

As can be seen from figure 10, the magnitude of  TI increases with particle size for a given 
pair of  2 and 0, except at 0 = 0 ° and 0 = 180 ° when T~ = 0. Figure 10 also suggests that 
T~ also increases with 2 for a given particle size and orientation angle 0. 
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Figure I0. Dimensionless torque, 3T,/(16n#IU:~K 2) [or force 3F3/(16nl~lWl~K2)], as a function 
of the orientation angle 0 for an ellipsoid translating parallel to the x3-axis (or rotating with angular 

velocity wle~): ---, case I; --, case II; -- x --, case III. 
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5.4. Rotation about an axis parallel to the x:axis  

Next we consider an ellipsoid rotating with angular speed w~ about the axis through O, 
which is parallel to the x;-axis. Selecting w~ a3 as the characteristic speed of the flow field, 
we have 

ct32=1 and ~ 2 3 = - i -  

Also, 
A j = 0  ( j  = 1, 2, 3), 

while the only non-zero components of A:  are given by 

A23 = -~(d,  + d2) and A32 = 2(d  3 + d4)  , 

where d,, d2 . . . . .  d s are given in table 2. 
From [43], we have for the torque Tj on the particle, 

T~ = - 8n#'63(T~t0 + K3T~,,) + O(K 4) [73] 

and /'2 = T3 = 0, where 

T110 = A32 - -423, [74a] 

T,H = (A32J52323 + .423P3223)(D3223 - D3232) + (A32J52332 + A23ff3232)(D2323 - D2332), [74b] 

P ~  = P,3,~ = P~,3, = P~3~ = ~, 

2 + 5k [74c] 1 - 22 and 152332 = Pi331 -~" 4(1 + 2)' /53223 --'-- P3113 - -  4(I + 2) 

The non-zero components, F2 and F3, of the force experienced by the particle are obtained 
to order g 3 by, respectively, multiplying the r.h.s, of [66e] by w,/U2 and the r.h.s, of [72d] 
by w,/U3. It is obvious from [74a] that the zero-order torque, T,,0, does not depend on 
0. The third-order component of T,, however, depends on 0 in the manner shown 
qualitatively in figure 1 1. For all three ellipsoids and all values of 2 and 0 plotted, we 
observe that T,,, is positive, implying that the presence of an interface causes an increase 
in the torque relative to its value for the particle in an infinite fluid. It is also to be noted 
that for given values of 2 and 0, the magnitude of  T,~, increases with particle size. 

O r i e n t a t i o n  a n g l e ,  8 

30 ° 60 ° 90*  120 ° 150" 180 ° 

-x ~ [ r I I X :O I ~ ~( 
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- 0 0 2  ~ x ~ .  / t ~ x  
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-olo ~ x:~ /×/+/~....× 
f \ "<" ~"-x-~ / / ./ t - -  
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Figure l I. Dimension|ess third-order torque, T m , as a function of the orientation angle 0 for an 
ellipsoid rotating with angular velocity w,e,: --- ,  case I; - - ,  case II; -- × --, case Ill. 



HYDRODYNAMIC RESISTANCE OF AN ARBITRARY PARTICLE 831 

5.5. Rotation about an axis parallel to the x2-axis 

Here, w2a s is selected as the characteristic speed of flow, where w 2 is the angular speed 
of particle rotation about the axis through O which is parallel to the x2-axis. The only 
non-zero elements of  ~0 in this situation are 

~13 = 1 and 

We deduce from [43] that 

T 2  ~ 

and 

7s= 
Here, 

220 

221 

"231 = 

AI3 = 

A21 = 

DI212 = 

O2112 

01221 

02121 

/51212 

0131 ~ -- 1. 

--87[IAIw2a~(T22o-~- K s T221) + O ( K  4) 

- - 8 ~ I w 2 ~ ] ( T 2 s o  + K s T231) + O ( K 4 ) .  

[75a] 

[75b] 

Ais - As1, T2s0 = A21 - AI2, [76a, b] 

-(Ais/531sl + As1/sts31)(D131s - Din1) - (Ais/sSll3 + As1 Plsls)(Ds113 - DSlSl), [76c] 

16(1 + 2)" 

All other terms appearing in [75a, b] have been previously defined, 

(A21/51212 + A12/52112)(D2112 - -  D2121) + (A21/51221 + At2P2121)(D12,2 - D1221) [76d] 

D3113 - D131s, As1 -- D3nl - Dissl, [77a, b] 

D3121 - D1321, AI2 = Din2 - D1s12, [77c, d] 

-}(b4a2 cos 2 0 + b3a~ sin 2 0), [78a] 

4 2 b7a] sin 2 0), [78b] -~(b8a2 cos 2 0 + 

4 2 -~al(b2 cos 2 0 + b l sin 2 0), [78c] 

-~a~(b cos 2 0 + bs sin 2 0), [78d] 

2 + 2  52 - 2  
P2121 = and P1221 =/52112 = [79a, b] 

1 6 0 + 2 )  

The expression for the only non-zero component, FI, of force is obtained, to order K 3, 
by multiplying the r.h.s. [62a] by w2/Ut. 

The qualitative variations of T220 and T221 with 0 are displayed in figures 12a and 12b, 
while those of T2r0 and T231 are displayed in figures 13a and 13b. It is seen from figures 
1 2a and 13a that T22o increases and T230 decreases as the particle size increases for any given 
value 0. Figure 12b shows that T221 is positive for all values of 0 and ;t plotted but figure 
13b shows that the sign of T231 for 2 = 0 is opposite that for ). = 1 or 2 = oo at any 
orientation angle 0. 

5.6. Rotation about an axis normal to the interface 

Consider next the rotation of the ellipsoidal particle about the axis through O which 
is normal to the interface. The characteristic velocity is chosen to be w3~3 in this case. Thus, 
the only non-zero components of ~t# are 

0121=1 and 0t12=-1.  

The expressions for T2 and /'3 are as given in [75a, b], [76a--d], [78a-d] and [79a, b] (with 
w2 replaced by ws) except that now A12, A2~, A3L and An are given by 

A21 = D1221 - D2121, AI2 = D1212 - D2112, [80a, b] 

As1 = Din1 - D21Sl and AI3 = D1213 - D211s. [80¢,d] 

The zero-order component of  T2 is equal to T2s0 of [76a]. The latter has been plotted in 
figure 13a. The zero- and third-order components of T3 are plotted as functions of 0 in 
figures 14a and 14b. It is shown in these figures that the magnitude of  the ordered 
components of/ '3 for any given pair, 2 and 0, increases as does the particle size. However, 
the sign of Tssl, the third-order component of T s for ;t = 0 is opposite that for 2 --- 1 or 
2 = oo for a given value of 0. Moreover, as shown in figure 15, T321, the third-order 
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Figure 12b. D imens ion le s s  third-order torque,  T2z ~, 
as a function of  the orientation angle 0 for an 
ellipsoid rotating with angular velocity w2e2 :  - - -  

case I; - - ,  case I I ;  -- x --, case I I I .  

component of/'2 has the same sign for all values of 2 and 0 plotted. The only non-zero 
component F~, of  the force is obtained by multiplying the r.h.s, of [62b] by wJU3. 

6 .  A P P L I C A T I O N  T O  S L E N D E R  B O D I E S  

The analysis of section 3 can be applied to slender bodies or other bodies for which the 
solution to [20] is known only approximately. For a slender body, whose half-length is l, 
appropriate forms of [20] and [27] are 

f 
' 

O~ i + agxj + OlijkXkX j -st-" • • : , ~2, ~ 3 ) ( 2 6 u R  - ]  - -  R.U) dp ,  [81]  

o.~e (o) 
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0 0 0  { I ~ J I i 
3 0  ° 6 0 "  90"  1; '0" 150 ° 180" 

Or,entatlon'~angle, 8 / 

-oo° % / /  
' ~ \  / / ;  

-000 ' ~ "  x" ~x J x / / /  

\\\ // 

-012 

-016 
Figure 13a. D imens ion le s s  zero-order  torque,  T230 (or 
/'32o) as a funct ion  o f  the or ientat ion angle 0 for an 
el l ipsoid rotat ing with  angular  velocity w 2e~ (or % e~): 

, case I; - - ,  case II; -- x --, case III. 
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A j = ~  ~dp,  A j k = - - ~  ~¢kdP, 
/ - I  

i 
f_ t~ ~ ~l dp Ajkt = ~ etc., [82] 

where ~,  ~2 and ¢3 are coordinates of points on the body axis and p is the distance 
measured along the centreline from the centre, O, of the body. It is worth noting however, 
that [82] can not be exactly satisfied up to and higher than the third .order in the 
slenderness ratio, E, without requiring the distribution of higher-order singularities (e.g. 
potential dipoles, doublets etc.) on the body axis; ~ is defined as 

E =In  , 

where R0 is the maximum effective radius of the body. 
For illustration purposes, we now calculate the force and torque experienced by an 

arbitrarily-oriented slender circular cylindrical body when the body is moving normal to 
the interface with speed U3. The coordinate system, (x~, x2, x3) is chosen such that the body 
axis lies entirely in the x2-x3 plane (i.e. ~ -= 0) and makes an angle 0 with the x3-axis, as 
shown in figure 16. In this system, the body centre, O, has coordinates (0, 0, d). We choose 
l and U3 as the characteristic length and speed, respectively, with respect to which other 
lengths and velocities are non-dimensionalized. Also K -  l/d. 

For this slender body, an approximate solution of [81] is (Batchelor 1970) 

fj = 0, [831 

[ I[ t 1 f : = - 2 c o s 0 s i n 0 E  I-½E In 1 -  + 3  +O(E 2) [84] 

and 

Also, 

f 3 = - 2 ( l + c o s 2 0 ) ~  1--½E In 1 -  -I 2(sin~ 0 ~) +O(E2) . [85] 

A2 = --½cos 0 sin 0E [1 -- E (In2 + ½) + O(E2)], [86] 

X 3 

Figure 16. A sketch of  the coordinate system and the position of the slender circular cylindrical 
body. 
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and 

{ E  3sin20 ,] 
A 3 = - ½ ( l + s i n  20)E I - E  l n 2 - 1 + 2 ( T n 2 ~ i )  +O(E2) ' [87] 

C33 = h3, [88] 

C23 = C32 = A2 [89] 

f l  t C22= -½(1 +cos20)e  1 - E  I n 2 -  1 +~-(~ ~ o ~ f f ) _ l + O ( E 2 )  . [901 

The non-zero components of the dimensional force, Fj, and torque, Tj, which the body 
experiences may be deduced from [42] and [43] to be 

F2 = 8rrB 1[.]31 [A 2 + K (A 3 P33C32 + A2 P22C22) + 0 (E 3, K2)], [91] 

F3 = 8nBJU31 [A3 + K(A3P33 C33 + A2P22C23) + O(E3,K2)] [92] 

and 

T~ = 8nBU313K 2 {A3[P322(D2223 - 02332) +/5333(03323 - -  03332)] 

+ A2[P232(D2323 -- D2332) + P223(D3223 - D3232) + O(E3,K3)]}. [93] 

In [93], 

(D2223 - -  D2232) - 2(D3323 - -  D3332 ) = COS 0 sin 0 ~ [1 + E (~ -- 2 In 2)], [94] 

D2323 - D2232 = - ½ cos 2 0 E [1 + E (-~ - 2 In 2)] [95] 

and 

D3223 - 03232 = ½ sin 2 0 E [1 + ~ (~ - 2 In 2)]. [96] 

It should be pointed out that the non-zero components of  Aj, C~ and D~t (i,j ,  k, l = 2, 3) 
have leading terms of order E. Consequently, remainder terms of  order K"(n = 1,2 . . . .  ) in 
[91]-[93] actually have leading terms of order E" as factors. Therefore, [91]-[93] are valid 
to the stated order in E alone, even when K( =--- l/d) is of the order of unity. 

The computed values of -F2/(ItltIIEU3), --F3/(TtI.tIIEU3) and --Ti/(rrl.tll2E2U3) are 
tabulated as functions of 0 for 2 = 0, 2 = 1 and 2 = ~ and for K = 0.5, K = 0.8 and 
K=(1 .01 )  -~ in table 3. All the tabulations are for E =0.1887. Agreement with the 
corresponding results of Yang & Leal (1983) is excellent. 
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